Fusion Reactor Design Parameters

By Glenn Weinreb

Basic Design

Magnetic Field on Axis (B):

- Represents the magnetic field strength at the center of the plasma.
- Key driver of plasma confinement and reactor performance.

Plasma Major Radius (R or R_{major}):

- The distance from the reactor's central axis to the plasma's center.
- o Affects the reactor's size and cost.

Plasma Minor Radius (a or R_{minor}):

- o The radius of the plasma cross-section.
- o Relates directly to the aspect ratio (A = R/a).

Plasma Aspect Ratio (A = $R/a = R_{major}/R_{minor}$):

- o Ratio of the major radius (R) to the minor radius (a).
- o Indicates the plasma's shape; lower aspect ratios imply more compact designs.

Blanket Thickness (b):

 Thickness of the materials surrounding the plasma, responsible for neutron shielding and heat extraction.

Plasma Power

Fusion Power (P_{fus}):
$$P_{\text{fus}} = (E_{\text{n}} + E_{\alpha}) P_{\alpha} / E_{\alpha} = 5 P_{\alpha}$$

- o Total power generated by fusion reactions in the plasma.
- $_{0}$ E_n = neutron energy (14.1MeV), E_α = alpha particle energy (He⁴, 3.5MeV)
- \circ P_{α} = power deposited into the plasma by alpha particles produced during fusion reactions.

Thermal Power (Pth):

$$P_{\text{th}} = f_{\text{m}} f_{\text{n}} P_{\text{fus}} + (1 - k_{\alpha}) P_{\alpha} + P_{\text{rad}} + P_{\text{h}}$$

$$= f_{\text{m}} f_{\text{n}} P_{\text{fus}} + P_{\alpha} + P_{\text{aux}}.$$

- o Total thermal power injected into the blanket.
- o Approximately 20% of P_{th} is surface heating of first wall and 80% of P_{th} is volumetric heating in blanket due to neutrons.

Fraction of neutron-to-alpha fusion power (f_n) :

o $f_n = E_n / (E_n + E_\alpha) = 0.8 = percent of fusion power that becomes neutrons.$

Fusion Gain (Q or Q_{plasma}):

o Ratio of fusion power (P_{fus}) to auxiliary heating power (P_{aux}).

Radiated Power (P_{rad}):

 Power lost through radiation, such as <u>Bremsstrahlung</u> radiation. This is most photons that cause surface heating against first wall.

Diffused Power (Ph):

o Power lost due to energy diffusion from the plasma.

Plasma Volume (V_a):

- o Total volume of the plasma.
- o Affects energy confinement and overall reactor performance.

Site Electrical Power

$$P_{\mathrm{e}} = \eta_{\mathrm{th}} P_{\mathrm{th}} - rac{P_{\mathrm{aux}}}{\eta_{\mathrm{aux}}} - rac{P_{\mathrm{pump}}}{\eta_{\mathrm{pump}}} - P_{\mathrm{cryo}}$$

Net Electric Power (Pe):

 Electric power delivered to the grid after subtracting power consumption by plant systems.

Heat Conversion Efficiency (η_{th}):

- Efficiency of converting thermal power into electric power (e.g. 49%).
- o Depends on the plant's heat extraction and power cycle systems.

Auxiliary Heating Power (Paux):

o External power input to heat the plasma to fusion conditions.

Auxiliary System Efficiency (η_{aux}):

- Efficiency of systems providing auxiliary heating power (e.g. 30%), from microwave and ion beam generators.
- o Impacts the reactor's net power output.

Liquid Wall Pumping Power (Ppump):

- o Power required to maintain liquid metal blanket flow for cooling and shielding.
- o Includes pressure drop contributions like gravitational, viscous, and magnetohydrodynamic (MHD) effects.
- ο η_{pump} = efficiency to convert wall power to liquid wall pumping power (P_{pump}), e.g. η_{pump} = 20%

Cryogenic Power (Pcryo):

Cryogenic system operating power.

Cryogenic Power Fraction (f_{cryo}): $P_{cryo} = f_{cryo} \times P_{th}$

- o Fraction of the total power (Pth) for cryogenics to cool the magnets, e.g. fcryo = 1.3%
- o Influences overall power consumption.

First Wall

Wall Loading Power (PWL):

- \circ Power load on the reactor's plasma-facing surfaces, critical for material design (MW_t/m²).
- o $P_{WL} = P_{th} / S_a$ $S_a = surface area of plasma facing wall$

Neutron Wall Loading Power (N_{WL}):

- \circ Neutron power per unit area on the plasma-facing components (MW_t/m²).
- o A critical parameter for material selection and component lifetime.

Blanket

Tritium Breeding Ratio (TBR):

- Measures the reactor's capability to produce sufficient tritium for self-sustaining operation.
- o Depends on blanket composition and neutron flux.

Neutron Multiplication Factor (f_m):

Enhancement of neutron power due to interactions in the blanket.

Fusion

$$D + T \rightarrow \text{He}^4(\alpha \text{ particle}) + \text{neutron (n)} + \text{Energy.}$$

Input: Deuterium (D) and Tritium (T)

Output: Alpha particles (He⁴ helium, 3.5 MeV) and Neutrons (14.1 MeV)

Neutron-to-Alpha Fusion Power Ratio (f_n):

o Fraction of fusion power carried by neutrons relative to alpha particles.

Plasma

Volume-Averaged Plasma Temperature (T):

o Average temperature of the plasma volume, crucial for achieving fusion conditions.

Plasma Internal Energy (W): $W = 3 \times n_e \times T \times V_a$

- o Total energy stored within the plasma.
- o Depends on density, temperature, and plasma volume.

Plasma Energy Density (n or n_e):

- o Line-averaged electron density (n_e) of the plasma (grams / m³).
- o Related to fusion reaction rates and power balance.

Energy Confinement Time (τ_E): $\tau_E = W / P_{loss}$

- o Time over which the plasma retains its energy, critical for sustaining fusion reactions.
- o Confinement Time (τ_E) is defined as ratio between plasma thermal energy power density (W = MW/cm³ in plasma) and power lost to plasma (P_{loss}).

Triple Product $(n \times T \times \tau_F)$: $n \times T \times \tau_F \propto B^4 \times V_a$

o Triple product scales with 4th power of magnet field (B) and plasma volume (V_a).

Normalized Plasma Pressure (β):

 Ratio of plasma pressure to magnetic pressure, indicating how effectively the plasma is confined.

Rotational Transform ($\iota_{2/3}$):

- o A measure of the magnetic field's twist at the plasma edge.
- o Helps maintain plasma stability and confinement.

Bremsstrahlung Radiation Constant (CB):

- o A numerical factor used in calculating radiative power losses.
- o Depends on plasma properties like density and effective ion charge (Z_{eff}).

Re-Normalization Factor (fren):

 A factor used to adjust the confinement scaling law based on the specific plasma configuration.

Effective Ion Charge (Z_{eff}):

- o Describes the contribution of impurities to the plasma charge state.
- o Affects energy loss through radiation.

Synchrotron Radiation Loss (Psynch):

- o Power lost through synchrotron radiation.
- Less significant than Bremsstrahlung but important in high-magnetic-field scenarios.

Cost Models

Capital Cost Components (TCC, TDC):

Total capital cost (TCC) includes direct and indirect costs of the plant.

o Total direct costs (TDC) focus on equipment, construction, and components.

Levelized Cost of Electricity (COE):

• Economic metric representing the overall cost of electricity generation over the plant's lifetime (\$/MWh).